Citations for the Research Article
Supporting Research for the 17 Foundational Principles
The following citations provide the research basis for each of the 18 principles underpinning the Mental Atlas Method
Section 1: Crafting the Icons — Building a Rich and Enduring Mental Landscape
1. Visualizing and Verbalizing (V/V): Turning Ideas into Rich Mental Pictures
Paivio, A. (1990). Dual coding theory. In Mental representations: A dual coding approach (pp. 53–83). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195066661.003.0004
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue canadienne de psychologie, 45(3), 255–287.1 https://doi.org/10.1037/h0084295
Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149–210. https://doi.org/10.1007/bf01320076
2. Abstract Property Indexing for Visual Anchors
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. https://doi.org/10.1146/annurev.psych.59.103006.0936392
Friedrich, J., Tanner, C. D., & Spivey, M. J. (2025). Grounded cognition and the representation of momentum: Abstract concepts modulate mislocalization. Psychological Research, 89, 51–71. https://doi.org/10.1007/s00426-024-01990-x (Note: Publication year is 2025 as per snippet)
American Psychological Association. (n.d.). Symbol grounding. In APA Dictionary of Psychology. Retrieved March 28, 2025, from https://dictionary.apa.org/symbol-grounding (Note: Retrieval date is illustrative)
3. 3D Models Aid Complex System Comprehension
Paivio, A. (1971). Imagery and verbal processes. Holt, Rinehart and Winston. (As cited by APA Dictionary and Wikipedia )
Kewenig, V. N., Vigliocco, G., & Skipper, J. I. (2024). When abstract becomes concrete, naturalistic encoding of concepts in the brain. eLife, 13, RP91522. https://doi.org/10.7554/eLife.91522.3
Bower, G. H. (1970). Analysis of a mnemonic device. American Scientist, 58(5), 496–510. (Focuses on imagery mnemonics for concrete, but principles apply to elaboration)
4. Method of Loci and Exceptional Visual Memory
Proulx, M. J., Todorov, O. S., Taylor Aiken, A., & de Sousa, A. A. (2016). Where am I? Who am I? The Relation Between Spatial Cognition, Social Cognition and Individual Differences3 in the Built Environment. Frontiers in Psychology, 7,4 64. https://doi.org/10.3389/fpsyg.2016.00064
Fernandez‐Baizan, C., Nuñez, P., Arias, J. L., & Mendez, M. (2020). Egocentric and allocentric spatial memory in typically developed children: Is spatial memory associated with visuospatial skills, behavior, and cortisol?5 Brain and Behavior, 10(5), e01532. https://doi.org/10.1002/brb3.1532
Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124(1), 77–97. https://doi.org/10.1196/annals.1440.002
5. Spaced Practice Reinforces Concepts
Markman, A. B., & Gentner, D. (1993). Structural alignment in similarity and difference judgments. Cognitive Psychology, 25(4), 517–535. (Note: The previous citation for JML is likely more accurate for “Splitting the Differences”)
Kozhevnikov, M., Hegarty, M., & Mayer, R. E. (2002). Revising the visualizer-verbalizer dimension: Evidence for two types of visualizers. Cognition6 and Instruction, 20(1), 47–77. https://doi.org/10.1207/S1532690XCI2001_3
Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8(6), 280–285. https://doi.org/10.1016/j.tics.2004.04.001
Section 2: Navigating the Space — Effortless Exploration and Attention
6. Cost of Switching Between Visual Contexts
Gentner, D., & Holyoak, K. J. (1997). Reasoning and learning by analogy: Introduction. American Psychologist, 52(1), 32–34. https://doi.org/10.1037/0003-066X.52.1.32
Gentner, D., & Loewenstein, J. (2003). Learning: Analogical Reasoning. In J. W. Guthrie (Ed.), Encyclopedia of Education (2nd ed., Vol. 4, pp. 1375–1379). Macmillan Reference USA.
Markman, A. B., & Gentner, D. (1993). Splitting the differences: A structural alignment view of similarity. Journal of Memory and Language, 32(4), 517–535.7 https://doi.org/10.1006/jmla.1993.1027
7. Rapid Searching Within Mental Spaces: Instantly Shifting Your Attention
Beckerson, M., Paisley, C., Murdaugh, D., Holm, H., Lemelman, A., Spencer, A., O’Kelley, S., & Kana, R. (2024). Reading comprehension improvement in autism. Frontiers in Psychiatry, 15, 1292018. https://doi.org/10.3389/fpsyt.2024.1292018
Bell, N. (2008). Visualizing and Verbalizing: For language comprehension and thinking (2nd ed.). Gander Publishing.
Paivio, A. (2010). Dual coding theory and the mental lexicon. The Mental Lexicon, 5(2), 205–230. https://doi.org/10.1075/ml.5.2.04pai
8. Development of Allocentric Views
Cleary, A. M., McNeely-White, K. L., Neisser, J., Drane, D. L., Liégeois-Chauvel, C., & Pedersen, N. P. (2025). Does familiarity-detection flip attention inward? The familiarity-flip-of-attention account of the primacy effect in memory for repetitions. Memory & Cognition. Advance online publication. https://doi.org/10.3758/s13421-024-01673-x
Gresch, D., Boettcher, S. E. P., Gohil, C., van Ede, F., & Nobre, A. C. (2024). Neural dynamics of shifting attention between perception and working-memory contents. Proceedings of the National Academy of Sciences, 121(47), e2406061121. https://doi.org/10.1073/pnas.2406061121
Posner, M. I. (2008). Measuring alertness. Annals of the New York Academy of Sciences, 1129(1), 193–199. https://doi.org/10.1196/annals.1417.011
9. Parallel Search in Visualized Mental Spaces
Paivio, A., & Begg, I. (1974). Pictures and words in visual search. Memory & Cognition, 2(3), 515–521. https://doi.org/10.3758/BF03209204
Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 1060–1092. https://doi.org/10.3758/s13423-020-01859-9 (Note: Snippets refer to Guided Search theory; this is a recent comprehensive update by Wolfe)
Bahle, B., Beck, V. M., & Hollingworth, A. (2019). The architecture of working memory: Features from multiple remembered objects produce parallel, coactive guidance of8 attention in visual search. Journal of Experimental Psychology: General,9 148(10), 1826–1847. https://doi.org/10.1037/xge0000582
Section 3: The Retrieval Engine — How Thoughts Instantly Summon Meaningful Icons
10. Semantic-Visual Linkage and Retrieval
Bahle, B., Kershner, A. M., & Hollingworth, A. (2021). Categorical cuing: Object categories structure the acquisition of statistical regularities to guide visual search. Journal of Experimental Psychology: Human Perception and Performance, 47(10), 1366–1382. https://doi.org/10.1037/xhp0000959
van den Berg, B., & Krebs, A. M. (2024). Category-based attention facilitates memory search. The Journal of Neuroscience, 44(6), e1608232023. https://doi.org/10.1523/JNEUROSCI.1608-23.2023
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. https://doi.org/10.1006/cogp.1998.0681
11. The Categorical Search Efficiency Principle
Ondřej, J., & Kinterová, S. (2024, October 22). The Method of Loci: A Systematic Review of Empirical Research in Psychological Context. OSF. Retrieved March 28, 2025, from osf.io/9ryx3 (Note: Retrieval date is illustrative)
Kewenig, V. N., Vigliocco, G., & Skipper, J. I. (2024). When abstract becomes concrete, naturalistic encoding of concepts in the brain. eLife, 13, RP91522. https://doi.org/10.7554/eLife.91522.3
Uttal, D. H., O’Doherty, K., Newland, R., Hand, L. L., & DeLoache, J. (2009). Dual representation and the linking of concrete and symbolic representations.10 Child Development Perspectives, 3(3), 156–159. https://doi.org/10.1111/j.1750-8606.2009.00097.x
12. Coherent Visual Fields as Cognitive Categories
Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4–58. https://doi.org/10.1177/152910061245326611
Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis.12 Psychological Bulletin, 132(3), 354–380. https://doi.org/10.1037/0033-2909.132.3.35413
Smolen, P., Zhang, Y., & Byrne, J. H. (2016). The right time to learn: Mechanisms and optimization of spaced learning. Nature Reviews Neuroscience,14 17(2), 77–88. https://doi.org/10.1038/nrn.2015.18
13. Dual Visual Memory Retrieval Pathways: Spatial Navigation vs. Content-Addressable Retrieval
Arnold, A. E., Iaria, G., & Ekstrom, A. D. (2023). Human spatial navigation: A brief review of its neural underpinnings and a discussion of its relationship to memory. Neuron, 111(7), 1037–1049. https://doi.org/10.1016/j.neuron.2023.03.001
Kroneisen, M. (2020). Individual differences in object and spatial imagery in the method of loci (Publication №28023988). ProQuest Dissertations & Theses Global.
Leshrach, S., St-Yves, G., & Polyn, S. M. (2020). Visual and semantic representations predict subsequent memory for objects. Journal of Cognitive Neuroscience, 32(10), 1937–1955. https://doi.org/10.1162/jocn_a_01607
Maguire, E. A., Frackowiak, R. S. J., & Frith, C. D. (1997). Recalling routes around London: Activation of the right hippocampus in taxi drivers. Journal of Neuroscience,15 17(18), 7103–7110. https://doi.org/10.1523/JNEUROSCI.17-18-07103.1997
Moscovitch, M., Rosenbaum, R. S., Gilboa, A., Addis, D. R., Westmacott, R., Grady, C., McAndrews, M. P., Levine, B., Black, S., Winocur, G., & Nadel, L. (2005). Functional neuroanatomy of remote episodic, semantic and spatialmemory:16 A unified account based on multiple trace theory.17 Current Opinion in Neurobiology, 15(2), 142–150. https://doi.org/10.1016/j.conb.2005.03.006
Nyberg, L., McIntosh, A. R., Cabeza, R., Habib, R., Houle, S., & Tulving, E. (1996). General and specific brain regions involved in encoding and retrieval of events: What, where, and when.18 Proceedings of the National Academy of Sciences,19 93(20), 11280–11285. https://doi.org/10.1073/pnas.93.20.11280
Wagner, I. C., Konrad, B. N., Schuster, P., Weisig, S., Repantis, D., Ohla, K., Kühn, S., & Axmacher, N. (2021). Mnemonic training reshapes brain networks to support superior memory. Science Advances, 7(10), eabe3695. https://doi.org/10.1126/sciadv.abe3695
Section 4: Unlocking Deeper Understanding — Enhanced Reasoning, Learning, and Insight
14. Enhanced Analogical Reasoning through Side‑by‑Side Visualization
Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2),20 207–231. https://doi.org/10.1037/0096-3445.124.2.207
Liefooghe, B., Barrouillet, P., Vandierendonck, A., & Camos, V. (2008). Working memory costs of task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 478–494.21 https://doi.org/10.1037/0278-7393.34.3.478
Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4),22 763–797. https://doi.org/10.1037/0096-1523.27.4.763
15. Analogical Reasoning as Central to Learning Transfer
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers.23 Proceedings of the National Academy of Sciences, 97(8), 4398–4403.24 https://doi.org/10.1073/pnas.070039597
Maguire, E. A., Nannery, R., & Spiers, H. J. (2006). Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain,25 129(11), 2894–2907. https://doi.org/10.1093/brain/awl286
16. Strategy Selection via Pattern Matching
Anderson, J. R. (1993). Rules of the mind. Erlbaum.
Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford University Press.
Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in problem solving: Combined influences on operator selection.26 Cognitive Psychology, 31(2), 168–217. https://doi.org/10.1006/cogp.1996.0014
17. Visual Imagery Facilitates Insight Problem-Solving
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15(3), 238–246. https://doi.org/10.3758/BF03197722
Schooler, J. W., & Melcher, J. (1995). The ineffability of insight. In S. M. Smith, T. B. Ward, & R. A. Finke (Eds.), The creative cognition approach (pp. 97–133).27 MIT Press.
Thomas, L. E., & Lleras, A. (2009). Covert shifts of attention function as an implicit aid to insight. Cognition, 111(2), 168–174. https://doi.org/10.1016/j.cognition.2009.01.005
Section 5: Growing with Your Museum — Long-Term Benefits and Skill Enhancement
18. Spatial Intelligence Improves with Practice
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170. https://doi.org/10.1016/S0364-0213(83)80009-3
Kurtz, K. J., Miao, C. H., & Gentner, D. (2001). Learning by analogical bootstrapping. The Journal of the Learning Sciences, 10(4), 417–446.28 https://doi.org/10.1207/S15327809JLS1004_2
Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive Science, 13(3), 295–355. https://doi.org/10.1207/s15516709cog1303_1
Visualizing Verbalizing Research
Bell, N. (1991). Gestalt imagery: A critical factor in language comprehension.Annals of Dyslexia, 41(1), 246–260. doi:10.1007/BF02648089 Lindamood-Bell
Johnson-Glenberg, M. C. (2000). Training reading comprehension in adequate decoders/poor comprehenders: Verbal versus visual strategies. Journal of Educational Psychology, 92(4), 772–782. doi:10.1037/0022–0663.92.4.772 ResearchGate
Eden, G. F., Jones, K. M., Cappell, K., Gareau, L., Wood, F. B., Zeffiro, T. A., & Flowers, D. L. (2004). Neural changes following remediation in adult developmental dyslexia. Neuron, 44, 411–422. https://doi.org/10.1016/j.neuron.2004.10.019 Lindamood-Bell
Truch, S. (2004). Stimulating basic recall in hyperlexic students using the Visualizing/Verbalizing Program. The Reading Foundation, Calgary, Canada. (Technical report) PubMed Central
Murdaugh, D. L., Maximo, J. O., & Kana, R. K. (2015). Changes in intrinsic connectivity of the brain’s reading network following intervention in children with autism. Human Brain Mapping, 36(8), 2965–2979. doi:10.1002/hbm.22821 PubMed Central
Murdaugh, D. L., Deshpande, H. D., & Kana, R. K. (2016). The impact of reading intervention on brain responses underlying language in children with autism. Autism Research, 9(1), 141–154. doi:10.1002/aur.1503 ResearchGate
Maximo, J. O., Murdaugh, D. L., O’Kelley, S., & Kana, R. K. (2017). Changes in intrinsic local connectivity after reading intervention in children with autism.Brain and Language, 175, 11–17. doi:10.1016/j.bandl.2017.08.008 UAB Sites
Doctoral dissertation
Lemelman, A. R. (2011). The impact of a Visualizing and Verbalizing language intervention on reading ability in children with autism spectrum disorders(Doctoral dissertation, University of Alabama at Birmingham). ProQuest №1513353. UAB Digital Commons
Ongoing / funded trial
National Institutes of Health (R01) — Efficacy of an intensive Visualizing and Verbalizing intervention for struggling readers (Project ID #9593912). Phase-III RCT, 2023–2027.
Additional Citations as I read more supporting research:
Carney, R. N., & Levin, J. R. (2000). Mnemonic instruction, with a focus on transfer. Journal of Educational Psychology, 92(4), 783–790. ResearchGate
Carney, R. N., & Levin, J. R. (2003). Promoting higher-order learning benefits by building lower-order mnemonic connections. Applied Cognitive Psychology, 17, 563–575. Wiley Online Library
Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: Basic research (pp. 51–85). Springer. SCIRP
Levin, J. R. (1993). Mnemonic strategies and classroom learning: A twenty-year report card. The Elementary School Journal, 94(2), 235–244.
1. Levin, M. E., & Levin, J. R. (1990). Scientific mnemonomies: Methods for maximizing more than memory. American Educational Research Journal, 27(2), 301 — 321.
Blurb: A pictorial “mnemonomy” helped undergrads learn a four-level plant taxonomy and, five days later, construct new hierarchies and solve plant analogies — evidence that keyword imagery can fuel higher-order reasoning.
2. Carney, R. N., & Levin, J. R. (2000). Mnemonic instruction, with a focus on transfer. Journal of Educational Psychology, 92(4), 783 — 790.
Blurb: Face-name keyword mnemonics let novices recognise unstudied Impressionist paintings from style alone, showing that imagery techniques can transfer well beyond the original learning set.
3. Carney, R. N., & Levin, J. R. (2003). Promoting higher-order learning benefits by building lower-order mnemonic connections. Applied Cognitive Psychology, 17(5), 563 — 575.
Blurb: Students who encoded fish families with keyword pictures later beat controls on analogy and hierarchy problems requiring flexible re-organisation of the taxonomy, confirming that concrete mnemonic anchors can bootstrap abstract problem-solving.
5. Spaced Practice Reinforces Concepts
Agarwal, P. K., Bain, P. M., & Chamberlain, R. W. (2012). The value of applied research: Retrieval practice improves classroom learning and recommendations from a teacher, a principal, and a scientist. Educational Psychology Review, 24, 437–448. https://doi.org/10.1007/s10648-012-9210-2
Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis.Psychological Bulletin, 132, 354–380. https://doi.org/10.1037/0033-2909.132.3.354
Kang, S. H. K. (2016). Spaced repetition promotes efficient and effective learning: Policy implications for instruction. Policy Insights from the Behavioral and Brain Sciences, 3, 12–19. https://doi.org/10.1177/2372732215624708
11. Categorical Search Efficiency Principle
Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects.Psychological Science, 15, 106–111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x
Hout, M. C., & Goldinger, S. D. (2015). Target template guidance in visual search is enhanced by target familiarity. Attention, Perception, & Psychophysics, 77, 1081–1099. https://doi.org/10.3758/s13414-015-0876-9
Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1, 1–8. https://doi.org/10.1038/s41562-017-0208-8
12. Single Visual Space Operates as One Cognitive Category
Hollingworth, A. (2006). Scene and position specificity in visual memory for objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 58–69. https://doi.org/10.1037/0278-7393.32.1.58
Brockmole, J. R., & Henderson, J. M. (2006). Recognition and attention guidance during contextual cueing in real-world scenes: Evidence from eye movements. Quarterly Journal of Experimental Psychology, 59, 1177–1187. https://doi.org/10.1080/17470210500416399
Makovski, T., & Jiang, Y. V. (2010). Contextual learning of multiple spatial configurations. Journal of Vision, 10(5), 4. https://doi.org/10.1167/10.5.4
14. Side-by-Side Visualization Boosts Analogical Reasoning
Kotovsky, L., & Gentner, D. (1996). Comparison and categorization in the development of relational similarity. Child Development, 67, 2797–2822. https://doi.org/10.1111/j.1467-8624.1996.tb01889.x
Richland, L. E., Holyoak, K. J., & Stigler, J. W. (2007). Analogy use in eighth-grade mathematics classrooms. Cognition and Instruction, 25, 199–240. https://doi.org/10.1080/07370000701399386
Alfieri, L., Nokes-Malach, T. J., & Schunn, C. D. (2013). Learning through comparison: A meta-analytic review. Psychological Bulletin, 139, 497–530. https://doi.org/10.1037/a0029767
15. Analogical Reasoning Drives Transfer Learning
Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38. https://doi.org/10.1016/0010-0285(83)90002-6
Vendetti, M. S., Knowlton, B. J., & Bunge, S. A. (2012). Integrating higher-order relations in working memory: A within-subjects fMRI investigation of the relational-integration hypothesis. NeuroImage, 62, 977–987. https://doi.org/10.1016/j.neuroimage.2012.05.012
Day, S. B., & Goldstone, R. L. (2012). The import of knowledge export: Connecting findings and theories of transfer of learning. Educational Psychologist, 47, 153–176. https://doi.org/10.1080/00461520.2012.696438
18. Spatial Intelligence Improves with Practice
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352–402. https://doi.org/10.1037/a0028446
Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31, 459–480. https://doi.org/10.1080/09500690802595839
Stieff, M., & Uttal, D. H. (2015). How much can spatial training improve STEM achievement? Educational Psychology Review, 27, 607–615. https://doi.org/10.1007/s10648-015-9304-8